User Guide¶
This page mirrors the core usage instructions from the project README so it renders in the MkDocs site.
NOTE - This section is under heavy development. Expect new content often as the project grows.
Quickstart¶
-
Create a virtual environment (optional but recommended)
python3 -m venv .venv && source .venv/bin/activate
-
Install dependencies
pip install -r requirements.txt
-
Ingest a sample month (e.g., July 2014)
python pipelines/ingest.py --from 2014-07 --to 2014-07
-
Run the Streamlit UI
Open http://localhost:8501 in your browser.streamlit run app/wspr_app.py
Notes¶
- Data is stored locally in
data/wspr.duckdb
. - The ingest script caches downloads and can clean caches with
--clean-cache
. - See the Makefile for shortcuts:
make setup-dev # create venv + install deps make ingest # ingest sample month make run # run Streamlit UI make test # run pytest suite
For more details, refer to the repository README on GitHub.
Command Line Interface Scripts¶
Along with the UI comes several command line interface ( CLI ) applicaitons. The following is a brief description of each, and it's basic usage
All scripts have a help function, e.g.: <app-name> --help
# ingest from WSPRnet into the DuckDB columnar database
wspr-ai-lite ingest --from YYYY-MM --to YYYY-MM --db data/wspr.duckdb [--cache .cache/wspr] [--offline]
# fetch one or more WSPRNet archives and stor locally
wspr-ai-lite-fetch --from YYYY-MM --to YYYY-MM --cache .cache/wspr [--force]
# launch the wspr-ai-lite user interface
wspr-ai-lite ui --db data/wspr.duckdb --port 8501
# set of tookls to check and verify database integrity and / or migrate from one schema to the standard
wspr-ai-lite-tools stats|verify [--strict] [--explain] | migrate [--no-backup]
# Model Concept Protocol Server - The Database interface for AI Agents
wspr-ai-lite-mcp serve --db data/wspr.duckdb [--init] [--host 127.0.0.1] [--port 8765]